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Abstract 

This paper introduces the system being developed at 
NASA Ames Research Center, intended for the Mars ’09 
Smart Lander, to robustly place sensors or tools against 
rocks in a single communications cycle.  Science targets 
must be assessed prior to instrument placement in order 
to segment them from the background and determine 
where, if possible, to position the instrument.  An initial 
result of this research effort is a novel Bayesian based 
method for segmenting rocks from the ground using 3D 
data. 

1. Introduction 

The ability to robustly place a manipulator mounted 
instrument against a science target in a single command 
cycle is essential for the proposed 2009 Mars Smart 
Lander rover mission (Figure 1).  Without this level of 
autonomy the current science goals cannot be met in the 
time available for the mission. 

 

Figure 1:  Artist’s conception of 2009 Mars Smart 
Lander  [JPL] 

The Sojourner rover (Figure 2), part of the 1997 Mars 
Pathfinder mission, required between three and five 
communications cycles between the rover and mission 
control to push an APX spectrometer against large rock 
targets.  The operation was considerably simplified by 
the use of a compliant spring-loaded mechanism to push 

the instrument against rocks.  Furthermore, the lander 
was able to observe the rover and report to mission 
control on its progress.  Mars Smart Lander will operate 
independently of a lander and will carry instruments 
requiring placement with centimeter accuracy from up 
to 10 m away. 

 

 

Figure 2:  Sojourner rover placing APX instrument 
against a rock target.[JPL] 

Reliability and verifiability are the fundamental 
concerns for flight missions and the reasons why 
Sojourner had such limited autonomy.  The rover could 
only execute rigid command sequences, the default 
response to unexpected behavior was to abort the 
sequence and wait for the next communications 
opportunity.  The reasons for this is that these rigid 
sequences could be rigorously checked and verified by 
mission control prior to being uploaded to the vehicle, 
guaranteeing that a whole class of failure modes would 
not occur. 

The NASA Ames Research Center has started an effort 
to develop robust single cycle instrument placement 
system on the Ames K9 rover platform (Figure 3) [1].  
It will address the Mars ‘09 Smart Lander needs and 
support a demonstration of advanced autonomy (robust 
and intelligent execution, deliberative planning and 
autonomous science) in 2004. 



 

Figure 3:  NASA Ames K9 rover platform. 

This paper introduces the NASA Ames single cycle 
instrument placement development effort describing the 
overall system architecture and component 
technologies.  Central to this system are algorithms to 
assess potential target rocks to segment them from the 
ground underneath and determine where on them an 
instrument may be placed.  An initial result is a novel 
3D rock/ground segmentation algorithm developed for 
this purpose, and described herein. 

1.1. Related work 

There is a concurrent research effort [2] being at the Jet 
Propulsion Laboratory, using the Rocky 8 and FIDO 
rovers, that is also investigating robust instrument 
placement for Mars ’09.  Using accurate visual 
navigation techniques, they are able to accurately drive 
a rover up to a target and lower a camera onto it, 
stopping when the image is in focus.  No contact is 
made with the target.   

Rock/ground segmentation is also pertinent to the 
automated interpretation of rover science images.  [3] 
demonstrate a different method to the method in this 
paper.  It also used 3D data to find multiple rock targets 
in the viewing area.  However, it assumes that the site is 
essentially planar, detecting rocks as small contiguous 
regions deviating from the plane.  It is therefore unlikely 
to handle the cases likely to occur here, where a single 
target rock dominates the scene. 

2. An architecture for robust instrument 
placement 

Figure 5 (next page) indicates the sequence of actions 
required for a rover to robustly approach a science 
target and place an instrument against it using its 
manipulator arm.  Mission controllers decide on a target 
and upload a flexible sequence with conditional 

branches to the rover.  This sequence includes the 
location of the target, information necessary to track it 
as the rover moves, and the actions and decisions 
needed to accomplish the task. 

Specifying the instrument placement operation using a 
flexible execution sequence with conditional branches 
enables us to exploit ongoing research on robust 
execution [4][5] and the ground tools for generating 
such sequences [6].   The sequence constrains the range 
of possible behaviors and limits autonomous actions to 
well defined areas.  Therefore, it can be verified and 
validated prior to uplink, increasing confidence that the 
rover will not get into a mission-endangering situation, 
such as low battery level. 

Subsequent to target designation and sequence upload, 
the rover must navigate to a location in from of the 
target while avoiding obstacles and keeping track of the 
target’s location, perhaps using the visual servoing 
algorithm of [7]. 

 

Figure 4:  NASA Ames K9 rover stereo navigation and 
science camera pairs. 

Upon getting close to the target the rover must 
determine its 3D shape (using high resolution stereo 
cameras, Figure 4) and precise location relative to the 
robot.  This information is used to assess the target: 
segmenting the rock from the background soil, finding 
which areas of the rock are consistent with the 
instrument and science requirements and which of these 
are in the manipulator workspace. 

If part of the rock target, consistent with the instrument 
and science requirements, can be reached, then the 
desired instrument pose must be calculated and the arm 
deployed, using contact or force sensors to determine 
when the instrument is in contact with the rock after the 
final few centimeters of motion (Figure 6).  Otherwise, 
a re-plan is necessary, either by mission control (who 
would upload a new sequence to move the rover after 
the next communications cycle), or possibly by an 
onboard planner. 



 

Figure 6:  K9 Rover 5 DOF manipulator arm with the 
CHAMP microscopic imager attached. 

3. 3D Rock and ground segmentation 

Assuming the rover has scanned the rock target and its 
background to obtain a 3D dot cloud X={xi|i=1..N}, the 
rock ground segmentation problem can be restated as 
that of finding their most likely rock/ground 
classifications C={ci|i=1..N}, integrated over the 

distribution of possible values for the scene model 
parameters M describing the rocks and the ground and 
the prior probabilities P of each.  Both P and M are 
unknown “hidden” or “nuisance” variables. 

This is the classic problem of estimating the modes of 
P(C|X), integrating over the hidden variables, and 
solved using the Expectation-Maximization (EM) 
algorithm [8][9], which in this case can be roughly 
stated as follows: 

1. Pick initial estimates for M and P. 

2. E-step: Determine maximum likelihood values for 
C given the estimates of M and P, and the 
measurements X.  In this case the individual 
maximum likelihood classifications ci can be 
computed independently by maximizing 
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3. M-step: compute new the “best-fit” estimates for M 
and P from X and max likelihood C based on the 
previous parameter estimates.  Iterate until 
convergence. 

 

Target 
Designation 

Servo to target 

3D Scan of 
Target 

Assess target 

Target in 
Workspace? 

Arm motion 
 

Placement 
Verification 

Recovery action
 

Figure 5:  Sequence of actions for a rover to approach a science target from up to 10m distance and
use a manipulator arm to place an instrument against the target in a manner consistent with the
instrument operating criteria and the science needs. 



In the special case that 
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distance metric between the point xi and its 
corresponding “class center”, the algorithm reduces to a 
variation of the k-means clustering algorithm: 

1. Pick initial estimates for M and P. 

2. Classify each xi according to whether it is closer to 
the rock class or the ground class as defined by the 
latest estimates for the model parameters M and 
class prior probabilities P. 

3. Re-estimate M and P given C and iterate until 
convergence. 

In step 3 above, the parameters M for a given class are 
estimated by minimizing the sum of square errors as 

defined by the class distance metric. 

3.1. Rock and ground scene model 

In order to apply the previous algorithm it is necessary 
to assume a scene model describing rocks, the ground 
and the distance between a 3D point and a given rock or 
the ground. 

Within the limited area viewable in front of the robot, 
the ground can be usefully modeled as a plane, 
described by a unit normal vector n and the 
perpendicular distance to the origin in the robot 
coordinate frame (Figure 7).  Rocks are modeled as 
hemispheres, described by their position and radius, and 
constrained to always point towards the viewing 
camera.  This is because the camera pair used to obtain 
range information can only see the front side of a rock 
and a sphere is therefore an inadequate model. 

Distances between data points and the ground plane are 
trivially computed. To compute the distance between a 
data point and a hemisphere ignore the back-plane and 
consider only the curved surface.  

Given a set of data points that are known to belong to 
the ground, the best-fit ground plane is easily 
determined by computing the eigenvector corresponding 
to the smallest eigenvalue.  This is the unit normal 
vector to the plane.  Computing the best-fit hemisphere 
to a set of points is best done by numerically 
minimizing the sum of square errors using an algorithm 
such as the Nelder-Mead simplex (direct search) method 
[10]. 
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Figure 7:  Rock and ground scene model 

3.2. Experimental rock/ground segmentation results 

Stereo camera (NavCams) images were acquired of a 
rock pile (Figure 8) in front of the K9 rover and a range 
map computed using the Ames stereo pipeline algorithm 
[11], and then transformed into a 3D dot cloud. 

 

Figure 8:  Rock scene in front of the K9 robot. 

This dot cloud was then segmented into rock and 
ground plane pixels using the k-means based algorithm 
above, assuming a single rock object in the scene.  
Figure 9 shows the resulting class assignments 
(segmentation) for the 3D data points.  The rock and 
ground plane points are clearly distinguished, in spite of 
the considerable noise and non-spherical nature of the 
rock.   



 

Figure 9:  3D point cloud derived from stereo range 
data of the scene in Figure 8 and segmented into points 
belonging to the rock pile (red) and points belonging to 
the ground plane (green). 

 

 

Figure 10:  Top view of segmented dot cloud in Figure 
9. 

The derived scene model based on maximum likelihood 
“nuisance” model parameters (rock position and radius, 
ground plane orientation and distance from origin) is 
shown in Figure 11. 

 

Figure 11:  Derived scene model from the segmentation 
of the 3D data from Figure 8.   

4. Conclusions and future work 

The capability to place sophisticated instruments against 
science targets in one command cycle from 10m away is 
essential for forthcoming planetary exploration rovers. 

The proposed overall instrument placement architecture 
rover architecture based on combining capabilities 
together with robust execution engines and ground 
based sequence-generating tools addresses the 
robustness and verification issues faced by flight 
missions.  Comprehensive and systematic rover field 
trials as the system is developed over the next few years 
are planned to validate this claim. 

A necessary capability for instrument placement is the 
segmentation of 3D data points generated by a target 
rock pile from those generated from the ground.  The 
algorithm presented here accomplishes this, assuming 
only that the ground underlying the target rock is 
relatively flat, and one compact rock pile is present.  No 
arbitrary parameters (other than bounds on the 
workspace) are used, and supervised training is 
unnecessary.  Furthermore, the algorithm is robust to 
noise, missing data, sparsely sampled or occluded 
regions.  It can be run on low-resolution data, 
minimizing execution time without compromising 
performance. 

Improved robustness could be attained by incorporating 
color and texture into the scene model.  This algorithm 
is very amenable to such changes, requiring only a 
refinement of the scene model.   

The main drawback of the clustering algorithm 
demonstrated here is the difficulty of robustly extending 
it to detecting an arbitrary number of rocks in the scene.  
This can be done by the algorithm in [3], but this is 
more complex and conceivably would fail when the 
scene is dominated by a single, large rock pile, as is 
likely in this scenario. 

Future work in this project will concentrate on the 
development of an end-to-end rover instrument 
placement system.  It will likely incorporate many 
different technologies.  The biggest challenges will be 
linking them together and understanding the behavior of 
the complete system. 
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